Skip to contents

Comparison between deSolve and denim

Using deSolve, we can replicate Erlang distribution and exponential distribution for testing

## Warning: package 'deSolve' was built under R version 4.3.1
# --- Transition def for denim
transitions <- list(
  "S -> I" = d_exponential(0.2),
  "I -> R" = d_gamma(3, 2)
)
parameters <- c(rate = 0.2, scale = 3, shape=2) 
initialValues <- c(S = 999, I = 1, I1 = 1, I2=0, R=0)

# --- Transition def for deSolve
transition_func <- function(t, state, param){
  with(as.list( c(state, param) ), {
      gamma_rate = 1/scale
      dS = -rate*S
      # apply linear chain trick
      dI1 = rate*S - gamma_rate*I1
      dI2 = gamma_rate*I1 - gamma_rate*I2
      dI =  dI1 + dI2
      dR = gamma_rate*I2
      list(c(dS, dI, dI1, dI2, dR))
  })
}

# --- Timestep definition
simulationDuration <- 20 
timestep <- 0.01 # small timestep required for comparison

Run simulation with denim

denim_start <- Sys.time()
mod <- sim(transitions = transitions, initialValues = initialValues, parameters, simulationDuration = simulationDuration, timeStep = timestep)
denim_end <- Sys.time()

# --- show output
head(mod[mod$Time %in% 1:simulationDuration,])
##     Time        S        I          R
## 101    1 817.9120 179.1000   2.987976
## 201    2 669.6497 310.9933  19.356938
## 301    3 548.2628 398.6234  53.113777
## 401    4 448.8796 448.3469 102.773515
## 501    5 367.5116 467.9487 164.539700
## 601    6 300.8930 465.0545 234.052532

Run simulation with deSolve

times <- seq(0, simulationDuration, timestep)

desolve_start <- Sys.time()
ode_mod <- ode(y = initialValues, times = times, parms = parameters, func = transition_func)
desolve_end <- Sys.time()

# --- show output
ode_mod <- as.data.frame(ode_mod)
head(ode_mod[ode_mod$time %in% 1:simulationDuration, c("time", "S", "I", "R")])
##     time        S        I          R
## 101    1 817.9120 179.0585   3.029466
## 201    2 669.6497 310.8686  19.481654
## 301    3 548.2628 398.4125  53.324630
## 401    4 448.8796 448.0650 103.055392
## 501    5 367.5116 467.6172 164.871207
## 601    6 300.8930 464.6948 234.412204

Execution time comparison

denim takes approximately 5.36 times as long as deSolve to compute the result with the given specifications .

This significant difference can be attributed to the difference in approaches: deSolve solves a system of ODEs while denim iterates through each timestep and updates the population in each compartment

While the approach in denim allow more flexibility in types of dwell time distributions, the computation time scales up as timestep grows smaller (in O(n) time complexity).

Plot the result

# increase timestep before plotting
mod <- mod[mod$Time %in% seq(0, simulationDuration, 0.2),]
ode_mod <- ode_mod[ode_mod$time %in% seq(0, simulationDuration, 0.2),]

Comparison with SEIR model

Implementation using deSolve

model definition and runtime using deSolve
library(deSolve)
parameters <- c(scale_I = 4, shape_I=2,
                scale_R = 3, shape_R = 2,
                timeStepDur = 1, R0 = 3.5, N = 1e6) 
initialValues <- c(S = 999999, E1 = 1,
                   E2 = 0, E = 0, I1=0, 
                   I2=0, I=0, R=0
                   )

# --- Transition def for deSolve
transition_func <- function(t, state, param){
  with(as.list( c(state, param) ), {
      gamma_rate_I = 1/scale_I
      gamma_rate_R = 1/scale_R
      
      tr = scale_R*shape_R
      
      dS = - (R0/tr) * S * I/N
      # apply linear chain trick
      dE1 = (R0/tr) * S * I/N - gamma_rate_I*E1
      dE2 = gamma_rate_I*E1 - gamma_rate_I*E2
      dE = dE1 + dE2
      dI1 = gamma_rate_I*E2 - gamma_rate_R*I1
      dI2 = gamma_rate_R*I1 - gamma_rate_R*I2
      dI =  dI1 + dI2

      dR = gamma_rate_R*I2
      list(c(dS, dE1, dE2, dE, dI1, dI2, dI, dR))
  })
}

times <- seq(0, 210, 1)

# ------ Compute mean for 10 runs ------
# runtimes <- sapply(1:10,
#   function(i){
#     time <- system.time(
#       ode(y = initialValues, times = times, parms = parameters, func = transition_func)
#     )
#     time[["elapsed"]]
#     
#   }
#   
# )
# mean(runtimes)

ode_mod <- ode(y = initialValues, times = times, parms = parameters, func = transition_func)

# --- show output
ode_mod <- as.data.frame(ode_mod)

Runtime for deSolve is ~ 0.013

Implementation using denim

model definition and runtime using denim
denim_model <- list(
  "S -> E" = "(R0/tr) * timeStepDur * S * (I/N)", # formulate according that of uSEIR method
  "E -> I" = d_gamma(scale = 4, shape = 2),
  "I -> R" = d_gamma(scale = 3, shape = 2)
)

initialValues <- c(S = 999999, E = 1, I= 0, R= 0)
parameters <- c(R0 = 3.5, 
                tr = 3*2, # compute mean recovery time, for gamma it's scale*shape
                N = 1e6, timeStepDur = 0.01)

# ------ Compute mean for 10 runs ------
# runtimes <- sapply(1:10,
#   function (i) {
#     time <- system.time(
#       sim(transitions = denim_model, 
#                      initialValues = initialValues,
#                      parameters = parameters,
#                      simulationDuration = 210, timeStep = 0.01)
#     )
#     return(time[["elapsed"]])
#   })
# mean(runtimes)

mod <- sim(transitions = denim_model, 
                     initialValues = initialValues,
                     parameters = parameters,
                     simulationDuration = 210, timeStep = 0.01)

# denim_out[, c("S","E", "I", "R")] <- denim_out[, c("S","E", "I", "R")]/1e6
plot(mod)

Runtime for denim is ~ 1.0548

Plot result