13  \(R_t\) in practice

13.1 Interpret \(R_t\)

library(dplyr)
library(tidyr)
library(zoo)
library(data.table)
library(ggplot2)
library(EpiEstim)
library(janitor)
library(cowplot)
library(lubridate)

13.2 \(R_t\) with color code

Code
df <- readRDS("data/linelist.rds")
df <- df |>
  count(date_onset) |>
  complete(date_onset = seq(date_onset[1], date_onset[length(date_onset)], by = "days"),
           fill = list(n = 0))

colnames(df) <- c("dates", "I")
df <- df |>
  filter(dates > ymd("2023-02-24"), dates < ymd("2023-06-23"))

mod <- estimate_R(incid = df,
                  method = "parametric_si",
                  config = make_config(list(mean_si = 4.5, std_si = 1.3)))

df_line <- mod$R
df_line$dates <- mod$dates[df_line$t_end]
df_line <- clean_names(df_line)
df_line <- df_line |>
  clean_names() |>
  mutate(
    b_posterior = std_r ^ 2 / mean_r,
    a_posterior = mean_r / b_posterior,
    pct = pgamma(
      1,
      shape = a_posterior,
      scale = b_posterior,
      lower.tail = F
    ),
    trend = case_when(
      pct > 0.9 ~ "purple",
      pct > 0.75 & pct <= 0.9 ~ "red",
      pct > 0.25 & pct <= 0.75 ~ "orange",
      pct > 0.1 & pct <= 0.25 ~ "yellow",
      pct <= 0.1 ~ "green"
    )
  )
df_line$trend <- factor(df_line$trend,
                        levels = c("green", "yellow", "orange", "red", "purple"))

df_ribbon <- df_line
df_ribbon$group <- consecutive_id(df_ribbon$trend)
df_ribbon <- head(do.call(rbind, by(df_ribbon, df_ribbon$group, rbind, NA)), -1)
df_ribbon[, c("trend", "group")] <- lapply(df_ribbon[, c("trend", "group")], na.locf)
df_ribbon[] <- lapply(df_ribbon, na.locf, fromLast = T)

cols <- c(
  "green" = "#169873",
  "yellow" = "#DFDF11",
  "orange" = "#FFA200",
  "red" = "#F2545B",
  "purple" = "#5328FF"
)
labs <- c(
  "green" = "Declining",
  "yellow" = "Likely declining",
  "orange" = "Uncertain trend or stable",
  "red" = "Likely growing",
  "purple" = "Growing"
)

epi_plot <- ggplot(df, aes(x = dates, y = I)) +
  geom_bar(stat = "identity", fill = "#AED2FF") +
  scale_x_date(limits = c(min(df$dates) - 1, max(df$dates) + 1), expand = c(0, 0)) +
  scale_y_continuous(expand = c(0, 0)) +
  labs(x = NULL, y = "Incidence") +
  theme_classic()

rt_plot <- ggplot() +
  geom_hline(yintercept = 1,
             alpha = 0.5,
             linetype = "dashed") +
  geom_ribbon(
    aes(
      x = dates,
      ymin = quantile_0_025_r,
      ymax = quantile_0_975_r,
      fill = trend,
      group = group
    ),
    data = df_ribbon,
    alpha = 0.3
  ) +
  geom_line(aes(
    x = dates,
    y = mean_r,
    color = trend,
    group = 1
  ), data = df_line) +
  scale_x_date(limits = c(min(df$dates) - 1, max(df$dates) + 1), expand = c(0, 0)) +
  scale_color_manual(
    values = cols,
    labels = labs,
    guide = guide_legend(nrow = 2, byrow = TRUE)
  ) +
  scale_fill_manual(
    values = cols,
    labels = labs,
    guide = guide_legend(nrow = 2, byrow = TRUE)
  ) +
  labs(
    x = "Date of onset",
    y = expression(R[t]),
    color = "Trend",
    fill = "Trend"
  ) +
  theme_classic() +
  theme(legend.position = "bottom")

plot_grid(epi_plot, rt_plot, nrow = 2, align = "v", rel_heights = c(0.4, 0.7))