References

Becker, A. D., & Grenfell, B. T. (2017). tsiR: An R package for time-series Susceptible-Infected-Recovered models of epidemics. PLOS ONE, 12(9), e0185528. https://doi.org/10.1371/journal.pone.0185528
Bettencourt, L. M. A., & Ribeiro, R. M. (2008). Real Time Bayesian Estimation of the Epidemic Potential of Emerging Infectious Diseases. PLOS ONE, 3(5), e2185. https://doi.org/10.1371/journal.pone.0002185
Bishai, D., Brenzel, L., & Padula, W. (Eds.). (2023). Handbook of applied health economics in vaccines. Oxford University Press. https://doi.org/10.1093/oso/9780192896087.001.0001
Bradshaw, W. J., Alley, E. C., Huggins, J. H., Lloyd, A. L., & Esvelt, K. M. (2021). Bidirectional contact tracing could dramatically improve COVID-19 control. Nature Communications, 12(1), 232. https://doi.org/10.1038/s41467-020-20325-7
Breban, R., Vardavas, R., & Blower, S. (2007). Theory versus Data: How to Calculate R0? PLOS ONE, 2(3), e282. https://doi.org/10.1371/journal.pone.0000282
Cauchemez, S., Bhattarai, A., Marchbanks, T. L., Fagan, R. P., Ostroff, S., Ferguson, N. M., Swerdlow, D., Pennsylvania H1N1 working group, the, Sodha, S. V., Moll, M. E., Angulo, F. J., Palekar, R., Archer, W. R., & Finelli, L. (2011). Role of social networks in shaping disease transmission during a community outbreak of 2009 H1N1 pandemic influenza. Proceedings of the National Academy of Sciences, 108(7), 2825–2830. https://doi.org/10.1073/pnas.1008895108
Chitnis, N. (2017). Introduction to SEIR Models.
Christley, R. M., Mort, M., Wynne, B., Wastling, J. M., Heathwaite, A. L., Pickup, R., Austin, Z., & Latham, S. M. (2013). Wrong, but Useful: Negotiating Uncertainty in Infectious Disease Modelling. PLOS ONE, 8(10), e76277. https://doi.org/10.1371/journal.pone.0076277
Cori, A., Ferguson, N. M., Fraser, C., & Cauchemez, S. (2013). A new framework and software to estimate time-varying reproduction numbers during epidemics. American Journal of Epidemiology, 178(9), 1505–1512. https://doi.org/10.1093/aje/kwt133
Delamater, P. L., Street, E. J., Leslie, T. F., Yang, Y. T., & Jacobsen, K. H. (2019). Complexity of the basic reproduction number (R0) - volume 25, number 1january 2019 - emerging infectious diseases journal - CDC. https://doi.org/10.3201/eid2501.171901
Diekmann, O., Heesterbeek, J. A. P., & Metz, J. A. J. (1990). On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations. Journal of Mathematical Biology, 28(4), 365–382. https://doi.org/10.1007/BF00178324
Driessche, P. van den. (2017). Reproduction numbers of infectious disease models. Infectious Disease Modelling, 2(3), 288–303. https://doi.org/10.1016/j.idm.2017.06.002
Driessche, P. van den, & Watmough, J. (2002). Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Mathematical Biosciences, 180(1), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6
Du, Z., Zhang, W., Zhang, D., Yu, S., & Hao, Y. (2017). Estimating the basic reproduction rate of HFMD using the time series SIR model in Guangdong, China. PLOS ONE, 12(7), e0179623. https://doi.org/10.1371/journal.pone.0179623
Finkenstädt, B. F., & Grenfell, B. T. (2000). Time series modelling of childhood diseases: A dynamical systems approach. Journal of the Royal Statistical Society Series C: Applied Statistics, 49(2), 187–205. https://doi.org/10.1111/1467-9876.00187
Goeree, R., & Diaby, V. (2013). Introduction to health economics and decision-making: Is economics relevant for the frontline clinician? Best Practice & Research Clinical Gastroenterology, 27(6), 831–844. https://doi.org/10.1016/j.bpg.2013.08.016
Gostic, K. M., McGough, L., Baskerville, E. B., Abbott, S., Joshi, K., Tedijanto, C., Kahn, R., Niehus, R., Hay, J. A., Salazar, P. M. D., Hellewell, J., Meakin, S., Munday, J. D., Bosse, N. I., Sherrat, K., Thompson, R. N., White, L. F., Huisman, J. S., Scire, J., … Cobey, S. (2020). Practical considerations for measuring the effective reproductive number, Rt. PLOS Computational Biology, 16(12), e1008409. https://doi.org/10.1371/journal.pcbi.1008409
Green, W. D., Ferguson, N. M., & Cori, A. (2022). Inferring the reproduction number using the renewal equation in heterogeneous epidemics. Journal of The Royal Society Interface, 19(188), 20210429. https://doi.org/10.1098/rsif.2021.0429
Heeg, B. M. S., Damen, J., Buskens, E., Caleo, S., Charro, F. de, & Hout, B. A. van. (2008). Modelling Approaches. PharmacoEconomics, 26(8), 633–648. https://doi.org/10.2165/00019053-200826080-00002
Hilborn, R., & Mangel, M. (1997). The ecological detective: Confronting models with data. Princeton University Press. https://www.jstor.org/stable/j.ctt24hqnx
Jit, M., & Brisson, M. (2011). Modelling the Epidemiology of Infectious Diseases for Decision Analysis. PharmacoEconomics, 29(5), 371–386. https://doi.org/10.2165/11539960-000000000-00000
Jones, J. H. (2007). Notes on R0. California: Department of Anthropological Sciences, 323, 1–19.
Keeling, M. J. (2006). State-of-science review: Predictive and real-time epidemiological modelling. S9. DTI.
Keeling, M. J., & Rohani, P. (2011). Modeling Infectious Diseases in Humans and Animals. Princeton University Press. https://doi.org/10.1515/9781400841035
Kenah, E., Lipsitch, M., & Robins, J. M. (2008). Generation interval contraction and epidemic data analysis. Mathematical Biosciences, 213(1), 71–79. https://doi.org/10.1016/j.mbs.2008.02.007
Kim, S.-Y., & Goldie, S. J. (2008). Cost-Effectiveness Analyses of Vaccination Programmes. PharmacoEconomics, 26(3), 191–215. https://doi.org/10.2165/00019053-200826030-00004
Knight, J., & Mishra, S. (2020). Estimating effective reproduction number using generation time versus serial interval, with application to covid-19 in the greater toronto area, canada. Infectious Disease Modelling, 5, 889–896. https://doi.org/10.1016/j.idm.2020.10.009
Kuntz, K., Sainfort, F., Butler, M., Taylor, B., Kulasingam, S., Gregory, S., Mann, E., Anderson, J. M., & Kane, R. L. (2013). Decision and Simulation Modeling Alongside Systematic Reviews. Agency for Healthcare Research; Quality (US). https://www.ncbi.nlm.nih.gov/books/NBK127478/
Meyerowitz-Katz, G., & Merone, L. (2020). A systematic review and meta-analysis of published research data on COVID-19 infection fatality rates. International Journal of Infectious Diseases, 101, 138–148. https://doi.org/10.1016/j.ijid.2020.09.1464
Nelson, K. E., & Williams, C. M. (2014). Infectious Disease Epidemiology: Theory and Practice. Jones & Bartlett Publishers.
Oxford College of Emory University. (n.d.). The connection between the poisson and binomial distributions. https://math.oxford.emory.edu/site/math117/connectingPoissonAndBinomial/
Pandit, J. J. (2020). Managing the R0 of COVID-19: mathematics fights back. Anaesthesia, 75(12), 1643–1647. https://doi.org/10.1111/anae.15151
Park, S. W., Li, M., Metcalf, C. J. E., Grenfell, B. T., & Dushoff, J. (2023). Immune boosting bridges leaky and polarized vaccination models. medRxiv. https://doi.org/10.1101/2023.07.14.23292670
Pollard, A. J., & Bijker, E. M. (2021). A guide to vaccinology: from basic principles to new developments. Nature Reviews Immunology, 21(2), 83–100. https://doi.org/10.1038/s41577-020-00479-7
Prieto, L., & Sacristán, J. A. (2003). Problems and solutions in calculating quality-adjusted life years (QALYs). Health and Quality of Life Outcomes, 1(1), 80. https://doi.org/10.1186/1477-7525-1-80
Rui, J., Li, K., Wei, H., Guo, X., Zhao, Z., Wang, Y., Song, W., Abudunaibi, B., & Chen, T. (2024). MODELS: A six-step framework for developing an infectious disease model. Infectious Diseases of Poverty, 13(1), 30. https://doi.org/10.1186/s40249-024-01195-3
Sender, R., Bar-On, Y., Park, S. W., Noor, E., Dushoff, J., & Milo, R. (2022). The unmitigated profile of COVID-19 infectiousness. eLife, 11, e79134. https://doi.org/10.7554/eLife.79134
Severens, J. L., & Milne, R. J. (2004). Discounting Health Outcomes in Economic Evaluation: The Ongoing Debate. Value in Health, 7(4), 397–401. https://doi.org/10.1111/j.1524-4733.2004.74002.x
Shim, E., & Galvani, A. P. (2012). Distinguishing vaccine efficacy and effectiveness. Vaccine, 30(47), 6700–6705. https://doi.org/10.1016/j.vaccine.2012.08.045
Sittimart, M., Rattanavipapong, W., Mirelman, A. J., Hung, T. M., Dabak, S., Downey, L. E., Jit, M., Teerawattananon, Y., & Turner, H. C. (2024). An overview of the perspectives used in health economic evaluations. Cost Effectiveness and Resource Allocation, 22(1), 41. https://doi.org/10.1186/s12962-024-00552-1
Smith, J. S., & Sturrock, D. T. (2023). Simio and simulation - modeling, analysis, applications - 6th edition. https://textbook.simio.com/SASMAA6/
Texier, G., Farouh, M., Pellegrin, L., Jackson, M. L., Meynard, J.-B., Deparis, X., & Chaudet, H. (2016). Outbreak definition by change point analysis: a tool for public health decision? BMC Medical Informatics and Decision Making, 16(1), 33. https://doi.org/10.1186/s12911-016-0271-x
Turner, H. C., Archer, R. A., Downey, L. E., Isaranuwatchai, W., Chalkidou, K., Jit, M., & Teerawattananon, Y. (2021). An introduction to the main types of economic evaluations used for informing priority setting and resource allocation in healthcare: Key features, uses, and limitations. Frontiers in Public Health, 9. https://www.frontiersin.org/articles/10.3389/fpubh.2021.722927
Vegvari, C., Abbott, S., Ball, F., Brooks-Pollock, E., Challen, R., Collyer, B. S., Dangerfield, C., Gog, J. R., Gostic, K. M., Heffernan, J. M., Hollingsworth, T. D., Isham, V., Kenah, E., Mollison, D., Panovska-Griffiths, J., Pellis, L., Roberts, M. G., Scalia Tomba, G., Thompson, R. N., & Trapman, P. (2022). Commentary on the use of the reproduction number R during the COVID-19 pandemic. Statistical Methods in Medical Research, 31(9), 1675–1685. https://doi.org/10.1177/09622802211037079
Verani, J. R., Baqui, A. H., Broome, C. V., Cherian, T., Cohen, C., Farrar, J. L., Feikin, D. R., Groome, M. J., Hajjeh, R. A., Johnson, H. L., Madhi, S. A., Mulholland, K., O’Brien, K. L., Parashar, U. D., Patel, M. M., Rodrigues, L. C., Santosham, M., Scott, J. A., Smith, P. G., … Zell, E. R. (2017). Case-control vaccine effectiveness studies: Preparation, design, and enrollment of cases and controls. Vaccine, 35(25), 3295–3302. https://doi.org/10.1016/j.vaccine.2017.04.037
Verguet, S., Johri, M., Morris, S. K., Gauvreau, C. L., Jha, P., & Jit, M. (2015). Controlling measles using supplemental immunization activities: A mathematical model to inform optimal policy. Vaccine, 33(10), 1291–1296. https://doi.org/10.1016/j.vaccine.2014.11.050
Vynnycky, E., & White, R. (2010). An Introduction to Infectious Disease Modelling. OUP Oxford.
Wallinga, J., & Lipsitch, M. (2006). How generation intervals shape the relationship between growth rates and reproductive numbers. Proceedings of the Royal Society B: Biological Sciences, 274(1609), 599–604. https://doi.org/10.1098/rspb.2006.3754
Wallinga, J., & Teunis, P. (2004). Different epidemic curves for severe acute respiratory syndrome reveal similar impacts of control measures. American Journal of Epidemiology, 160(6), 509–516. https://doi.org/10.1093/aje/kwh255
Whitehead, S. J., & Ali, S. (2010). Health outcomes in economic evaluation: The QALY and utilities. British Medical Bulletin, 96(1), 5–21. https://doi.org/10.1093/bmb/ldq033
World Health Organization. (2013). Correlates of vaccine-induced protection: Methods and implications.
Zachreson, C., Tobin, R., Szanyi, J., Walker, C., Cromer, D., Shearer, F. M., Conway, E., Ryan, G., Cheng, A., McCaw, J. M., & Geard, N. (2023). Individual variation in vaccine immune response can produce bimodal distributions of protection. Vaccine, 41(45), 6630–6636. https://doi.org/10.1016/j.vaccine.2023.09.025